Subscribe to the Pivotal Scientific newsletter to receive industry insights and life science news straight to your inbox

Cambridge researcher receives Nobel Prize for the development of cryo-EM

Kristina Whitfield

Oct 23, 2017

Science 5

Nobel Prize is one of the highest accolades that a researcher can receive, and It can also bring well-needed funding. For the 2017 Nobel prize in chemistry, Jacques Dubochet, Joachim Frank and Richard Henderson received a Nobel Prize for their work in developing cryo-electron microscopy (cryo-EM). Many laboratories now favour cryo-EM over X-ray crystallography, and it is rapidly becoming an essential tool for structural biology.

Author: Kristina Whitfield Undertakes marketing activities for Pivotal Scientific and their clients.

Kristina Whitfield
Nobel Prize in Chemistry awarded for development of cryo-electron microscopy  to Jacques Dubochet, Joachim Frank and Richard Henderson | Science |  In-depth reporting on science and technology | DW | 04.10.2017
4 October 2017. The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2017 to
Jacques Dubochet (University of Lausanne, Switzerland), Joachim Frank (Columbia University, New York, USA)
and Richard Henderson (MRC Laboratory of Molecular Biology, Cambridge, UK)
“for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”

The nobel prize in sciences

The Nobel Prize is an international award administered by the Nobel Foundation in Stockholm, Sweden. It is bestowed in recognition of academic, cultural or scientific advances. The prizes are categorised into physics, chemistry, physiology or medicine, literature, economic sciences and peace. Each Nobel Prize consist of a medal, a personal diploma, and a substantial cash award.

In terms of the sciences, this year’s award for physics was shared by three researchers, Rainer Weiss, Kip Thorne and Barry Barish of the LIGO-Virgo collaboration, for the detection of gravitational waves. Meanwhile, the award for physiology or medicine honoured three US scientists, Jeffrey Hall, Michael Rosbash and Michael Young, for their discoveries of molecular mechanisms controlling the circadian rhythm.

For chemistry, Jacques Dubochet, Joachim Frank and Richard Henderson received a Nobel Prize on 4th October 2017 for their work in developing cryo-electron microscopy (cryo-EM). Jacques Dubochet was born in Switzerland and Joachim Frank is German. Richard Henderson originates from Edinburgh, and is the 15th Nobel laureate to work at the Medical Research Council (MRC) Laboratory of Molecular Biology in Cambridge.

Imaging method

For decades, biomolecular structures have been imaged using X-ray crystallography. A process which involves the scattering of X-rays as they pass through a crystallised protein. However not all proteins are amenable to being crystallised. Cryo-EM relies on a cryogenically frozen protein sample. This allows researchers to deduce high resolution protein structures of virtually any biological specimen close to its native state.

The research carried out by Dubochet, Frank and Henderson was performed during the 1970s and 1980s. Yet, it laid the essential groundwork for subsequent improvements in the sensitivity of electron microscopes and their associated software. In 1975, Henderson and his colleague Nigel Unwin used electron microscopy to successfully produce a 3D model of bacteriorhodopsin; a molecule which is unsuited to X-ray crystallography. They then published their findings in Nature.

During the same decade, Frank, now based at Columbia University in New York City, and colleagues developed image-processing software. This software could generate 3D molecular structures from the output of the electron microscope. In the early 1980s Dubochet, now an honorary professor at the University of Lausanne in Switzerland, and colleagues established a method of flash-freezing protein solutions using liquid ethane. Furthermore, this method prevent water soluble biomolecules from drying out in the vacuum of an electron microscope. Hence, allowing molecules to retain their shape during imaging.

Cryo-EM vs X-ray crystallography

Many laboratories now favour cryo-EM over X-ray crystallography, and it is rapidly becoming an essential tool for structural biology. For example, during the 2015 Zika virus outbreak researchers turned to cryo-EM to visualise the virus and accelerate the search for potential drug targets. Sirohi et al identified a sequence of amino acids surrounding the Asn154 glycosylation site of the envelope glycoproteins which showed significant variability between Zika strains suggesting a role in virus transmission and disease. On the other hand, Prasad et al observed differences in pre-epidemic and epidemic Zika strains which could modulate the sensitivity of the virus to antibodies, and impact the potency of viral infection.

Nobel Prize is not only one of the highest accolades that a researcher can receive.  It can also bring well-needed funding to a notoriously competitive field. This year’s awards for scientific advancement cover a diversity of research areas. Thus, further raise the profile of the entire scientific community.

Related Articles